• Users Online: 153
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 4  |  Issue : 3  |  Page : 88-92

The effect of tea tree oil in inhibiting the adhesion of pathogenic periodontal biofilms in vitro


1 Department of Periodontic, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
2 Undergraduate Student, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
3 Department of Periodontic, Faculty of Medicine, Jendral Achmad Yani University, West Java, Indonesia
4 Department of Microbiology, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia

Correspondence Address:
Abdul Gani Soulissa
Department of Periodontology, Faculty of Dentistry, Trisakti University, Jakarta
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/SDJ.SDJ_33_20

Rights and Permissions

Background: Tea tree (Melaleuca alternifolia) oil (TTO) is known to have anti-inflammatory, antibacterial, antifungal, and antiviral properties. Objectives: The aim of this study was to determine the effects of TTO on the ability of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans biofilms to adhere to enamel surfaces in vitro. Methods: P. gingivalis and A. actinomycetemcomitans were cultured in brain heart infusion (BHI) broth at 37°C for 24 h in anaerobic conditions. Eighteen premolar teeth were inoculated and incubated for 48 h to form biofilms on enamel surfaces. Subsequently, TTO in 6.25%, 12.5%, 25%, and 50% concentrations was added and incubated for 1 and 3 h. Chlorhexidine (0.2%) and BHI broth were used as positive and negative controls, respectively. The remaining biofilm colonies were counted using an enzyme-linked immunosorbent assay reader (490 nm). The teeth were placed in microtubes containing phosphate-buffered saline and vortexed for 20 s. Subsequently, biofilms were cultured in BHI agar for 24 h. The colonies in each concentration were estimated as colony-forming units per milliliter. Statistical analysis was performed using one-way analysis of variance. The level of statistical significance was set to P < 0.05. Results: Treatment with all concentrations of TTO significantly reduces biofilm adhesion compared to the negative control after both incubation periods (P < 0.05). The concentration that most effectively inhibited the adhesion of P. gingivalis was 12.5% after 1 h incubation. The concentration that most effectively inhibited the adhesion of A. actinomycetemcomitans was 25% after 1 h incubation. Conclusion: TTO inhibits the adhesion of P. gingivalis and A. actinomycetemcomitans biofilms to enamel surfaces and may be useful as a treatment for oral diseases. Further studies should examine its efficacy in vivo.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed83    
    Printed0    
    Emailed0    
    PDF Downloaded10    
    Comments [Add]    

Recommend this journal